Commissioning and early experience with a new-generation low-energy linear accelerator with advanced delivery and imaging functionalities
نویسندگان
چکیده
BACKGROUND A new-generation low-energy linear accelerator (UNIQUE) was introduced in the clinical arena during 2009 by Varian Medical Systems. The world's first UNIQUE was installed at Oncology Institute of Southern Switzerland and put into clinical operation in June 2010. The aim of the present contribution was to report experience about its commissioning and first year results from clinical operation. METHODS Commissioning data, beam characteristics and the modeling into the treatment planning system were summarized. Imaging system of UNIQUE included a 2D-2D matching capability and tests were performed to identify system repositioning capability. Finally, since the system is capable of delivering volumetric modulated arc therapy with RapidArc, a summary of the tests performed for such modality to assess its performance in preclinical settings and during clinical usage was included. RESULTS Isocenter virtual diameter was measured as less than 0.2 mm. Observed accuracy of isocenter determination and repositioning for 2D-2D matching procedures in image guidance was <1.2 mm. Concerning reproducibility and stability over a period of 1 year, deviations from reference were found <0.3 ± 0.2% for linac output, <0.1% for homogeneity, similarly to symmetry. Rotational accuracy of the entire gantry-portal imager system showed a maximum deviation from nominal 0.0 of <1.2 mm. Pre treatment quality assurance of RapidArc plans resulted with a Gamma Agreement Index (fraction of points passing the gamma criteria) of 97.0 ± 1.6% on the first 182 arcs verified. CONCLUSIONS The results of the commissioning tests and of the first period of clinical operation, resulted meeting specifications and having good margins respect to tolerances. UNIQUE was put into operation for all delivery techniques; in particular, as shown by the pre-treatment quality assurance results, it enabled accurate and safe delivery of RapidArc plans.
منابع مشابه
Commissioning and early experience with a new generation low-energy linear accelerator in zahedan
Introduction: Since commissioning beam data are treated as a reference and ultimately used by treatment planning systems, it is vitally important that the collected data are of the highest quality to avoid dosimetric and patient treatment errors that may subsequently lead to a poor radiation outcome. Beam data commissioning should be performed with appropriate knowledge and pr...
متن کاملCommissioning the First Mobile Dedicated Accelerator for Intraoperative Electron Radiotherapy in Iran
Introduction: Intraoperative radiotherapy is a radiotherapy technique in which a high single fraction of radiation dose is delivered to the patient after surgery and Concurrent with anesthesia time. The most frequent method for IORT implementation is Intraoperative electron radiotherapy (IOERT), in which, some dedicated and high dose per pulse electron accelerators are employe...
متن کاملCommissioning and initial stereotactic ablative radiotherapy experience with Vero
The purpose of this study is to describe the comprehensive commissioning process and initial clinical performance of the Vero linear accelerator, a new radiotherapy device recently installed at UT Southwestern Medical Center specifically developed for delivery of image-guided stereotactic ablative radiotherapy (SABR). The Vero system utilizes a ring gantry to integrate a beam delivery platform ...
متن کاملتطبیق پذیری باریکه -H در قسمت انرژی پایین و متوسط ماشین Linac4 در سرن
Linac4 is the near future 160 MeV H- linear accelerator of the CERN presently under construction. It will replace the present Linac2 as injector of the proton accelerator complex in CERN. The Linac4 is composed of a 45 keV ion source, a Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ), which accelerates the beam to 3 MeV, and a Medium Energy Beam Transport (MEBT), ...
متن کاملThe Effect of Field Size and Distance from the Field Center on Neutron Contamination in Medical Linear Accelerator
Objective: Using Megavoltage photons generated by medical linear accelerator is a common modality for the treatment of malignant. The crucial problem for using photon beams >8MV is the photoneutron yields that increase the risk of secondary cancer that treated with high-energy photon beams. The contaminated neutrons produced in different components of the accelerator head and rely on many param...
متن کامل